A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes

نویسندگان

  • Xuliang Liu
  • Shuhai Zhang
  • Hanxin Zhang
  • Chi-Wang Shu
چکیده

In this paper, we develop a class of nonlinear compact schemes based on our previous linear central compact schemes with spectral-like resolution [X. Liu, S. Zhang, H. Zhang and C-W. Shu, A new class of central compact schemes with spectral-like resolution I: Linear schemes, Journal of Computational Physics 248 (2013) 235-256]. In our approach, we compute the flux derivatives on the cell-nodes by the physical fluxes on the cell nodes and numerical fluxes on the cell centers. To acquire the numerical fluxes on the cell centers, we perform a weighted hybrid interpolation of an upwind interpolation and a central interpolation. Through systematic analysis and numerical tests, we show that our nonlinear compact scheme has high order, high resolution and low dissipation, and has the same ability to capture strong discontinuities as regular weighted essentially non-oscillatory (WENO) schemes. It is a good choice for the simulation of multiscale problems with shock waves.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of central compact schemes with spectral-like resolution I: Linear schemes

In this paper, we design a new class of central compact schemes based on the cell-centered compact schemes of Lele [S.K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992) 16-42]. These schemes equate a weighted sum of the nodal derivatives of a smooth function to a weighted sum of the function on both the grid points (cell boundaries) and the cel...

متن کامل

Scalable Nonlinear Compact Schemes

The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Solutions to hyperbolic conservation laws are often characterized by a large range of length scales as well as discontinuities. Standard nonlinear finite-difference schemes, such as the WENO sche...

متن کامل

Scalable Nonlinear Compact Schemes Mathematics and Computer Science Division

The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Solutions to hyperbolic conservation laws are often characterized by a large range of length scales as well as discontinuities. Standard nonlinear finite-difference schemes, such as the WENO sche...

متن کامل

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws

The simulation of turbulent compressible flows requires an algorithm with high accuracy and spectral resolution to capture different length scales, as well as nonoscillatory behavior across discontinuities like shock waves. Compact schemes have the desired resolution properties and thus, coupled with a nonoscillatory limiter, are ideal candidates for the numerical solution of such flows. A clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 284  شماره 

صفحات  -

تاریخ انتشار 2015